A Bloch-Sphere-Type Model for Two Qubits in the Geometric Algebra of a 6-D Euclidean Vector Space
نویسندگان
چکیده
Geometric algebra is a mathematical structure that is inherent in any metric vector space, and defined by the requirement that the metric tensor is given by the scalar part of the product of vectors. It provides a natural framework in which to represent the classical groups as subgroups of rotation groups, and similarly their Lie algebras. In this article we show how the geometric algebra of a six-dimensional real Euclidean vector space naturally allows one to construct the special unitary group on a two-qubit (quantum bit) Hilbert space, in a fashion similar to that used in the well-established Bloch sphere model for a single qubit. This is then used to illustrate the Cartan decompositions and subalgebras of the four-dimensional unitary group, which have recently been used by J. Zhang, J. Vala, S. Sastry and K. B. Whaley [Phys. Rev. A 67, 042313, 2003] to study the entangling capabilities of two-qubit unitaries.
منابع مشابه
یادداشتی بر دوگانی AdS/CFT
We study duality of field theories in (d+1) dimensional flat Euclidean space and (d+1) dimensional Euclidean AdS space for both scalar the and vector fields. In the case of the scalar theory, the injective map between conformally coupled massless scalars in two spaces is reviewed. It is shown that for vector fields the injective map exists only in four dimensions. Since Euclidean AdS space is e...
متن کاملGeneralized Weighted Composition Operators From Logarithmic Bloch Type Spaces to $ n $'th Weighted Type Spaces
Let $ mathcal{H}(mathbb{D}) $ denote the space of analytic functions on the open unit disc $mathbb{D}$. For a weight $mu$ and a nonnegative integer $n$, the $n$'th weighted type space $ mathcal{W}_mu ^{(n)} $ is the space of all $fin mathcal{H}(mathbb{D}) $ such that $sup_{zin mathbb{D}}mu(z)left|f^{(n)}(z)right|begin{align*}left|f right|_{mathcal{W}_...
متن کاملGeometric Algebra in Quantum Information Processing
This paper describes an intuitive geometric model for coupled twostate quantum systems (qubits), which is formulated using geometric (aka Clifford) algebra. It begins by showing how Euclidean spinors can be interpreted as entities in the geometric algebra of a Euclidean vector space. This algebra is then lifted to Minkowski space-time and its associated geometric algebra, and the insights this ...
متن کاملTangent Bundle of the Hypersurfaces in a Euclidean Space
Let $M$ be an orientable hypersurface in the Euclidean space $R^{2n}$ with induced metric $g$ and $TM$ be its tangent bundle. It is known that the tangent bundle $TM$ has induced metric $overline{g}$ as submanifold of the Euclidean space $R^{4n}$ which is not a natural metric in the sense that the submersion $pi :(TM,overline{g})rightarrow (M,g)$ is not the Riemannian submersion. In this paper...
متن کاملGeometry of Entangled States , Bloch Spheres and Hopf Fibrations
We discuss a generalization to 2 qubits of the standard Bloch sphere representation for a single qubit, in the framework of Hopf fibrations of high dimensional spheres by lower dimensional spheres. The single qubit Hilbert space is the 3-dimensional sphere S. The S base space of a suitably oriented S Hopf fibration is nothing but the Bloch sphere, while the circular fibres represent the qubit o...
متن کامل